Applied Thermodynamics & Heat Transfer

712101N

M.E. (Thermal Engineering) Mechanical Engineering Department Ghandhinagar Institute of Technology 2011-2012

Mechanical Engineering Department

ME Semester I

Applied Thermodynamics & Heat Transfer (712101N)

Index

Sr. No.	Items	Remark
1	Syllabus	
2	Reference Book List	
3	Lesson plan	
3	Assignments	
5	GTU Paper	
6	Mark sheet of MSE/TA/LPW	

GUJARAT TECHNOLOGICAL UNIVERSITY

Mechanical Engineering (Thermal Engineering)

M.E. Semester: 1

Subject Code	Subject	Teaching Scheme (Hours)			Credit
		Theory	Tutorial	Practical	
712101N	Applied Thermodynamics & Heat Transfer	4	0	0	4

University					Branch
Theory	Practical / Viva	MSE Marks (M)	Practical (1)	Total Marks	Code
70	0	30	20	120	21

Sr. No	Sub. Part.	Course Content		
1	nodynamics	Basic concepts of thermodynamics; irreversibility; Review of basic laws of thermodynamics and their consequences; Concept of Exergy and Entropy; Exergy for closed system; Entropy generation; entropy balance for closed system; behaviour of gases; Equations of state.		
2	Applied Thern	Phase equilibrium; phase rule without chemical reaction; chemical potential of ideal gases; T-ds equations for simple compressible systems; Helmholtz and Gibbs functions; Maxwell relations; generalized relations for changes in enthalpy; entropy and internal energy; equations for specific heats; Clausius clapeyron equation; Joule-Thomson and Joule coefficients; applications of thermodynamic relations.		
3	ransfer	Review of the basic laws of conduction; One dimensional steady state conduction with variable thermal conductivity and with internal distributed heat source; Extended surfaces-review and design considerations; Two dimensional steady state conduction; Unsteady state conduction; solutions using Groeber's and Heisler's charts for plates, cylinders and spheres suddenly immersed in fluids.		
4	Heat T	Review of convection and radiation heat transfer laws, Natural and forced convection; Heat transfer in turbulent flow; eddy heat diffusivity; Reynold's analogy between skin friction and heat transfer; von Karman; turbulent flow through circular tubes; Review of radiation principles; diffuse surfaces and the Lambert's Cosine law; Radiation through non-absorbing media; Hottel's method of successive reflections.		

Mechanical Engineering Department

Subject: Applied Thermodynamics & Heat Transfer (712101N)

Reference Books

Applied Thermodynamics:

- 1. Fundamentals of Engineering Thermodynamics, Moran MJ & Shapiro HM, John Wiley.
- 2. Engineering Thermodynamics work and heat Transfer, Roger Gordon & Yon Mayhew, Addison-Wesley.
- 3. Thermodynamics an Engineering Approach, Cengel Y.A. & Boles M.A., TMH.
- 4. Fundamentals of Classical Thermodynamics, Van Wylen GJ & Sonntag RE, Wiley
- 5. Thermodynamics, Wark K. Jr. & Donald E.R., Mc Graw Hill (6th Edn.); 1999.
- 6. Engineering Thermodynamics by Jones & Dugan
- 7. Engineering Thermodynamics by P. K. Nag
- 8. Basic Engineering Thermodynamics by T Ray chaudhary
- 9. Fundamentals of Engineering thermodynamics, R. Yadav.
- 10. Advanced thermodynamics Engineering, Kalyan Annamalai & Ishwar K Puri, CRC Press

Heat Transfer:

- 11. Fundamentals of Heat Transfer, Incropera.
- 12. Heat, Mass and Momentum transfer, Rohsenow and Choi Prentice Hall
- 13. Fundamentals of Heat Transfer, Grober, Erk and Mc Graw Hill Grigull
- 14. Analysis of Heat and Mass Transfer, Eckert and Drake McGraw Hill
- 15. Thermal Radiation, Siegel and Howell McGraw Hill.
- 16. Heat and Mass Transfer, R.K.Rajput
- 17. Heat and Mass Transfer, D.S.Kumar
- 18. Handbook of Thermal Engineering, Kreith F

Mechanical Engineering Department

M.E. Thermal Engineering

Lesson Planning

Subject: <u>Applied Thermodynamics & Heat Transfer</u> (712101N)

Sr. No.	Topics	Lectures (Hours)	Reference books	Teaches by
1	Basic concepts of thermodynamics; irreversibility; Review of basic laws of thermodynamics and their consequences; Concept of Exergy and Entropy; Exergy for closed system; Entropy generation; entropy balance for closed system; behaviour of gases; Equations of state.	10	1,3,4,5,7,9	HBK
2	Phase equilibrium; phase rule without chemical reaction; chemical potential of ideal gases; T-ds equations for simple compressible systems; Helmholtz and Gibbs functions; Maxwell relations; generalized relations for changes in enthalpy; entropy and internal energy; equations for specific heats; Clausius clapeyron equation; Joule-Thomson and Joule coefficients; applications of thermodynamic relations.	14	1,3,4,5,7,9	HBK

Subject in charge	Taken by	HOD
Prof. Nimesh M Gajjar	Prof. Hardik Kothadia	Prof. Mitesh J Mungla

Reference Books:

Applied Thermodynamics:

- 1. Fundamentals of Engineering Thermodynamics, Moran MJ & Shapiro HM, John Wiley.
- 2. Engineering Thermodynamics work and heat Transfer, Roger Gordon & Yon Mayhew, Addison-Wesley.
- 3. Thermodynamics an Engineering Approach, Cengel Y.A. & Boles M.A., TMH.
- 4. Fundamentals of Classical Thermodynamics, Van Wylen GJ & Sonntag RE, Wiley
- 5. Thermodynamics, Wark K. Jr. & Donald E.R., Mc Graw Hill (6th Edn.); 1999.
- 6. Engineering Thermodynamics by Jones & Dugan
- 7. Engineering Thermodynamics by P. K. Nag
- 8. Basic Engineering Thermodynamics by T Ray chaudhary
- 9. Fundamentals of Engineering thermodynamics, R. Yadav.
- 10. Advanced thermodynamics Engineering, Kalyan Annamalai & Ishwar K Puri, CRC Press

Mechanical Engineering Department

M.E. Thermal Engineering

Lesson Planning

Subject: Applied Thermodynamics & Heat Transfer (712101N)

Sr. No.	Topics	Lectures (Hours)	Reference books	Teaches by
1	Review of the basic laws of conduction; One dimensional steady state conduction with variable thermal conductivity and with internal distributed heat source; Extended surfaces-review and design considerations; Two dimensional steady state conduction; Unsteady state conduction; solutions using Groeber's and Heisler's charts for plates, cylinders and spheres suddenly immersed in fluids.	11	11,12,16,17	NMG
2	Review of convection and radiation heat transfer laws, Natural and forced convection; Heat transfer in turbulent flow; eddy heat diffusivity; Reynold's analogy between skin friction and heat transfer; von Karman; turbulent flow through circular tubes; Review of radiation principles; diffuse surfaces and the Lambert's Cosine law; Radiation through non-absorbing media; Hottel's method of successive reflections.	13	11,12,15,16, 17	NMG

Subject in charge	Taken by	HOD
Prof. Nimesh M Gajjar	Prof. Nimesh M Gajjar	Prof. Mitesh J Mungla

Reference Books:

Heat Transfer:

- 11. Fundamentals of Heat Transfer, Incropera.
- 12. Heat, Mass and Momentum transfer, Rohsenow and Choi Prentice Hall
- 13. Fundamentals of Heat Transfer, Grober, Erk and Mc Graw Hill Grigull
- 14. Analysis of Heat and Mass Transfer, Eckert and Drake McGraw Hill
- 15. Thermal Radiation, Siegel and Howell McGraw Hill.
- 16. Heat and Mass Transfer, R.K.Rajput
- 17. Heat and Mass Transfer, D.S.Kumar
- 18. Handbook of Thermal Engineering, Kreith F

Mechanical Engineering Department

ME semester – I

Applied Thermodynamics and Heat Transfer (712101N)

ТА		Pla	n
component	Faculty Name	Туре	Proposed date/present status during semester
TA 1	NMG	Term Assignment	Fifth week /
TA 2	HBK	Term Assignment	Six week /
TA 3	NMG	Term Assignment	Tenth week /
TA 4	HBK	Term Assignment	Eleven week /

Above assignment will have to be submitted within a week from the given date.

Course coordinator

Prof. Nimesh M Gajjar